

Compressed Air Filtration

DF Tiefenfilter / Koaleszenzfilter / Partikelfilter

V

HERAUSRAGENDE MERKMALE

- Koaleszenzfilter / Partikelfilter zur Rückhaltung von Öl- und Wasseraerosolen sowie Feststoffpartikel aus Druckluft oder Gasen im industriellen Einsatzbereich
- Innovative Filtrationstechnologie; gewickeltes Tiefenfiltermedium mit hoher Schmutzaufnahmefähigkeit zur Erzielung hoher Abscheideleistungen bei niedrigem Differenzdruck
- Validierte Leistungsdaten nach ISO12500; zuverlässiges Erreichen der Druckluftqualität nach ISO8573-1
- Strömungsoptimiertes Design, geringer Druckverlust für wirtschaftliche Druckluftaufbereitung (Einsparung von Energiekosten)
- Einzigartig einfache Änderung der Durchströmungsrichtung als Koaleszenzfilter bzw. Partikelfilter durch Umstecken eines Codierclips in der Filterglocke

Tiefenfilter V

INDUSTRIEN

• Chemische und pharmazeutische Industrie

Leiterplatten und CD-Herstellung

Oberflächenveredelung

• Maschinen- und Anlagenbau

Energieversorgung

Donaldson Filtration Deutschland GmbH

Büssingstr. 1 D-42781 Haan

Tel.: +49 (0) 2129 569 0 Fax: +49 (0) 2129 569 100 E-Mail: CAP-de@donaldson.com Web: www.donaldson.com

PRODUKTBESCHREIBUNG

Die Filterelemente V sind für die Aufbereitung von Druckluft oder Gasen im industriellen Einsatzbereich vorgesehen.

Die spezifizierten Leistungsdaten zur Erzeugung der Druckluftqualitätsklassen nach ISO 8573-1 wurden nach ISO 12500-1 (Ölabscheidung) und ISO 12500-3 (Partikelabscheidung) validiert.

Durch ein strömungsoptimiertes Design des Filterelementes sowie durch das eingesetzte Filtermedium und die angewendete Fertigungstechnologie wird der Differenzdruck minimiert und kontinuierlich hohe Abscheideleistungen gewährleistet.

Die Filterelemente V besitzen ein dreidimensionales Mikrofaservlies aus Polyester, welches öl- und wasserabweisend wirkt.

Unter Ausnutzung verschiedener Filtrationsmechanismen, wie Abscheidung durch Aufprall, Siebeffekt und Diffusion werden Flüssig- und Festkörperschwebstoffe im Filter zurückgehalten.

Querschnitt durch den Tiefenfilter

Typische Anwendungen für das V Filterelement sind:

• Zentrale Druckluftaufbereitung:

Vorfilter zum Schutz von Kälte- und Adsorptionstrocknern, Anwendungen mit hohem Partikelanfall

Endstellenanwendungen:

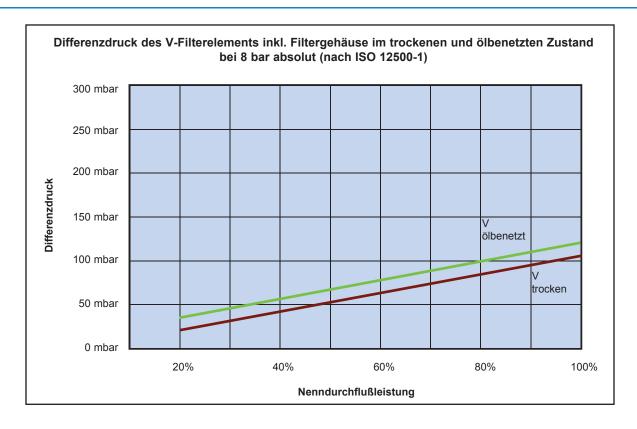
Endstufen-Filtration für Steuerungs-/ Instrumenten - und Prozessluft

Adsorptionstrockner / Aktivkohleadsorber:

Partikelfilter zur Rückhaltung von Adsorbensabrieb

Automobilindustrie:

Aufbereitung von Druckluft für Lackieranwendungen


PRODUKTSPEZIFIKATIONEN

Merkmale	Nutzen
Validierte Leistungsdaten nach ISO 12500-1 und ISO 12500-3	Zuverlässiges Erreichen der Druckluftqualität nach ISO 8573-1
Intelligentes Gesamtkonzept	Baureihenabstufung, Filterfeinheiten und Abscheidegrade sowie verwendete Materialien optimal auf die Anforderungen der industriellen Druckluftaufbereitung abgestimmt
Strömungsoptimiertes Design	Geringe Druckverluste, dadurch Einsparung von Energiekosten
Koaleszenzmantel durch äußeren Stützmantel fixiert	Strömungsquerschnitt zwischen Element und Gehäuse jederzeit sichergestellt; Optimierte Drainagefunktion durch dauerhaft stabile Struktur des Koaleszenzmantels
Stützmantel aus Edelstahl-Streckmetall	Absicherung des Filtermediums gegen Druckstöße. Geringer Druckverlust durch große freie Querschnittsfläche
Verwendung von Edelstahlmaterial in Verbindung mit glasfaserverstärktem Polyamid	Optimaler Korrosionsschutz

Materialien							
Filtermedium	Mikrofaser-Polyestervlies						
Koaleszenzmantel	Polyestervlies						
Stützmäntel - innen und aussen	Edelstahl 1.4301 / 304						
Endkappen	Glasfaserverstärktes Polyamid						
O-Ringe	Viton: Silikon - und trennmittelfrei (Standard)						
Vergussmasse	Polyurethan						
Validierung							
Validierung der Hochleistungsfilterelemente nach ISO 12500-1 und ISO 12500-3							

LEISTUNGSDATEN

Betriebsüberdruck bar ü	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Umrechnungsfaktor fp	0,25	0,38	0,50	0,63	0,75	0,88	1,00	1,13	1,25	1,38	1,50	1,63	1,75	1,88	2,00	2,13

Elemente- Typ	Nenndurchflußleistung bei 7 bar ü m³/h*	Auslegungsbeispiel für vom Nenndruck abweichenden Druck
0035	35	
0070	70	V _{nom} = 350 m ³ /h, Betriebsdruck = 9 bar (ü)
0120	120	$V_{korr} = \frac{V_{nom}}{f_D}$
0210	210	v _{korr} – fp
0320	320	$V_{.} = \frac{350 \text{ m}^3/\text{h}}{200 \text{ m}^3/\text{h}} = 280 \text{ m}^3/\text{h}$
0450	450	$V_{korr} = \frac{1,25}{1,25} = 280 \text{ m}^3/\text{h}$
0600	600	
0750	750	Berechnete Größe: Typ 0320
1100	1100	

 $^{^{\}star}$ m³ bezogen auf 1 bar abs. und 20°C

ZERTIFIKAT

Werksbescheinigung

nach DIN EN 10204 2.2

Bestätigung der Auslegungs-und Leistungsdaten mit Werkszeugnis. Die Ergebnisse der Typprüfungen (Validierungen) sind im folgenden aufgelistet.

Filter Typ	V		Fi	ltergröße	0035 - 1100						
Abscheidung von Ölaerosolen nach ISO 12500-1											
Ölabscheidegrad bei 8 bar absolut und 10 mg/m³ Eintrittskonzentration 96%											
Restälkenzentration hei Eintrittekenzentration von						< 0,40 mg/m ³					
Restolkorizeritra	Restölkonzentration bei Eintrittskonzentration von 3 mg/m³					/m³	< 0,20 mg/m ³				
	Abscheidung von Partikeln nach ISO 12500-3										
Partikel-	unterer	0,19	0,24	0,36	0,52	0,81	1,16	1,78	2,74	3,92	
durchmesser [µm] oberer 0,24 0,36				0,52	0,81	1,16	1,78	2,74	3,92	6,00	
Partikelabscheidegrad bei 8 bar absolut [%] 17,1		22,3	31,7	50,9	83,1	98,5	100	100	100		

3072

Wolfgang Bongartz

Product Line Manager Industrial Filtration Technology Donaldson Filtration Deutschland GmbH