

Compressed Air Filtration AG / SG / HD

Tiefenfilter / Koaleszenzfilter / Partikelfilter

CF

HERAUSRAGENDE MERKMALE

- Koaleszenzfilter / Partikelfilter zur Rückhaltung von Öl- und Wasseraerosolen sowie Feststoffpartikel aus Druckluft oder Gasen im industriellen Einsatzbereich
- Innovative Filtrationstechnologie; gewickeltes Tiefenfiltermedium mit hoher Schmutzaufnahmefähigkeit zur Erzielung hoher Abscheideleistungen bei niedrigem Differenzdruck
- Leistungsdaten nach ISO12500; zuverlässiges Erreichen der Druckluftqualität nach ISO8573-1
- Strömungsoptimiertes Design, minimaler Druckverlust für wirtschaftliche Druckluftreinigung (Einsparung von Energie kosten)

Tiefenfilter CF

INDUSTRIEN

• Chemische und pharmazeutische Industrie

Leiterplatten und CD-Herstellung

• Oberflächenveredelung

Maschinen- und Anlagenbau

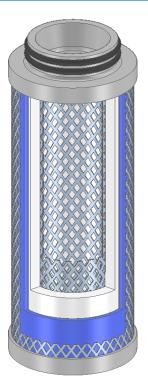
Energieversorgung

Donaldson Filtration Deutschland GmbH

Büssingstr. 1 D-42781 Haan

Tel.: +49 (0) 2129 569 0 Fax: +49 (0) 2129 569 100 E-Mail: CAP-de@donaldson.com Web: www.donaldson.com

PRODUKTBESCHREIBUNG


Die Filterelemente CF sind für die Aufbereitung von Druckluft oder Gasen im industriellen Einsatzbereich vorgesehen.

Leistungsdaten nach ISO 12500-1 (Ölabscheidung) zur Erzeugung der Druckluftqualitätsklassen nach ISO 8573-1.

Durch ein strömungsoptimiertes Design des Filterelementes sowie durch das eingesetzte Filtermedium und die angewendete Fertigungstechnologie wird der Differenzdruck minimiert und kontinuierlich hohe Abscheideleistungen gewährleistet.

Die Filterelemente CF besitzen ein dreidimensionales Mikrofaservlies aus Polyester, welches ölund wasserabweisend wirkt.

Unter Ausnutzung verschiedener Filtrationsmechanismen, wie Abscheidung durch Aufprall, Siebeffekt und Diffusion werden Flüssig- und Festkörperschwebstoffe im Filter zurückgehalten.

Querschnitt durch den Tiefenfilter

Typische Anwendungen für das CF Filterelement sind:

• Zentrale Druckluftaufbereitung:

Vorfilter zum Schutz von Kälte- und Adsorptionstrocknern, Anwendungen mit hohem Partikelanfall

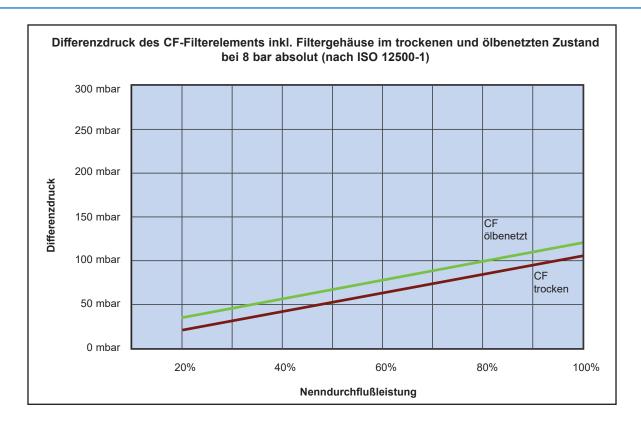
• Endstellenanwendungen:

Endstufen-Filtration für Steuerungs-/ Instrumenten - und Prozessluft

Adsorptionstrockner / Aktivkohleadsorber:

Partikelfilter zur Rückhaltung von Adsorbensabrieb

• Automobilindustrie:


Aufbereitung von Druckluft für Lackieranwendungen

PRODUKTSPEZIFIKATIONEN

Merkmale	Nutzen
Leistungsdaten nach ISO 12500-1	Zuverlässiges Erreichen der Druckluftqualität nach ISO 8573-1
Intelligentes Gesamtkonzept	Baureihenabstufung, Filterfeinheiten und Abscheidegrade sowie verwendete Materialien optimal auf die Anforderungen der industriellen Druckluftaufbereitung abgestimmt
Strömungsoptimiertes Design	Geringe Druckverluste, dadurch Einsparung von Energiekosten
Koaleszenzmantel durch äußeren Stützmantel fixiert	Strömungsquerschnitt zwischen Element und Gehäuse jederzeit sichergestellt; Optimierte Drainagefunktion durch dauerhaft stabile Struktur des Koaleszenzmantels
Stützmantel aus Edelstahl-Streckmetall	Absicherung des Filtermediums gegen Druckstöße. Geringer Druckverlust durch große freie Querschnittsfläche
Verwendung von Edelstahlmaterial in Verbindung mit Aluminium	Optimaler Korrosionsschutz

Materialien	
Filtermedium	Mikrofaser-Polyestervlies
Koaleszenzmantel	Polyestervlies
Stützmäntel - innen und aussen	Edelstahl 1.4301 / 304
Endkappen	Aluminium
O-Ringe	NBR: Silikon - und trennmittelfrei (Standard)
Vergussmasse	Polyurethan

LEISTUNGSDATEN

Betriebsüberdruck bar ü	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Umrechnungsfaktor fp	0,25	0,38	0,50	0,63	0,75	0,88	1,00	1,13	1,25	1,38	1,50	1,63	1,75	1,88	2,00	2,13

Elemente- Typ	Nenndurchflußleistung bei 7 bar ü m³/h*	Auslegungsbeispiel für vom Nenndruck abweichenden Druck
02/05	20	
03/05	40	V _{nom} = 192 m³/h, Betriebsdruck = 9 bar (ü)
03/10	60	$V_{\text{korr}} = \frac{V_{\text{nom}}}{f_{\text{D}}}$
04/10	90	v korr fp
04/20	120	$V_{\text{loss}} = \frac{192 \text{ m}^3/\text{h}}{1.25} = 153,6 \text{ m}^3/\text{h}$
05/20	180	$V_{korr} = \frac{1,25}{1,25} = 153,6 \text{ m}^3/\text{h}$
05/25	270	
07/25	360	Berechnete Größe: Typ 05/20
07/30	480	Defectifiete Grosse. Typ 03/20
10/30	720	
15/30	1080	
20/30	1440	
30/30	1920	
30/50	2880	

^{*} m³ bezogen auf 1 bar abs. und 20°C

ZERTIFIKAT

Werksbescheinigung

nach DIN EN 10204 2.2

Bestätigung der Auslegungs-und Leistungsdaten mit Werkszeugnis. Die Ergebnisse der Typprüfungen sind im folgenden aufgelistet.

Filter Typ	CF	Filtergröße	02/05 - 30/50					
Abscheidung von Ölaerosolen nach ISO 12500-1								
Ölabscheidegrad bei 8 bar absolut und 10 mg/m³ Eintrittskonzentration								
Restölkonzentra	tion hai E	< 1,0 mg/m ³						
Restolkonzentra	uon bei E	< 0,30 mg/m ³						
Abscheidung von Partikeln nach ISO 12500-3								
Partikeldurchm [µm]	esser	3						
Partikelabscheid bei 8 bar absol	0	100						

2072

Wolfgang Bongartz

Engineering Manager CAF
Donaldson Filtration Deutschland GmbH